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OVERVIEW:

There are few analytic studies of nonlinear stall flutter, most studies being
experimental, and recently, of the computational fluid dynamic type. The present
investigation develops an analytic method to include the nonlinear aerodynamic and
structural effects into a full 3-dimensional, aeroelastic problem, using the
mathematical tools of Fourier analysis, harmonic balance, and the Newton-Raphson
method as a numerical solver. The nonlinear aerodynamics are introduced using the
ONERA stall flutter model! while the nonlinear structures are introduced by moderate

deflection cantilever beam theories such as Hodges & Dowell2 which is used in
helicopter theory and involves coupling of traditional bending and torsion modes
with fore-and-aft modes. It is hoped that this new nonlinear analysis, and the
attendant flutter experiments on various aeroelastically tailored composite wings,
will shed important light on the phenomenon of high angle-of-attack stall flutter, its
severity, and how it evolves out of small amplitude, linear flutter at low angles-of-
attack.

SUMMARY OF ACCOMPLISHMENTS:

A combined ecxperimental and analytic program was undertaken to investigate
the nonlinear stall flutter and divergence behavior of aeroelastically tailored
composite wings. Experimentally, a set of zero sweep cantilever wing models, of
length 30 cm, were constructed from flat composite plates covered with styrofoam
fairings to give NACA 0012 contours. The wings had varying amounts of bending-
torsion coupling ranging from positive to negative values. Tests were conducted in
the wind tunnel at varying root angles as shown in Fig.l. These tests revealed linear
flutter and divergence as well as nonlinear torsion stall flutter and bending stall
flutter.  Flutter velocity boundaries, frequencies, limit cycles, and static deflection
were observed at different root angles of attack. Analytically, a new nonlinear
flutter analysis technique was developed based on the ONERA aerodynamic stall
model, together with simple frequency and harmonic balance techniques to obtain
the resulting nonlinear stall limit cycles that can arise from aeroelastic instabilities.
Both torsional stall and bending stall flutter limit cycles were successfully predicted
by this technique and matched the observed experimental behavior. Figure 2 shows

2-23053

92 8 1§ ¢yg -1- \\\\\\‘\\\\\\\\\\l\\\\\\\\\l\\\\\\\\ |




-~
*

the flutter boundary versus root angle of attack for a typical wing with no bending -
twist coupling, while Fig.3 shows the boundary when positive coupling is present.
Accompanying static positions and limit cycle amplitudes for Fig.2 are shown in
Fig.4, indicating a torsional stall flutter situation, while the corresponding quantities
for Fig.3 indicated a bending stall flutter situation (also note the much lower flutier
frequency in Fig.3 corresponding to the bending mode rather than the torsion
mode). A detailed report on this work is given by Dunn3, while a paper summarizing
some of these results was presented at the 31st AIAA SDM Conference last year?.

An additional set of composite wings, twice the size of the previous wings was
also constructed and tested. This yielded improved, high quality experimental data to
compare with the analysis, and to observe the transitions from classical linear low
angle of attack flutter to stall flutter at high angles of attack. Supplementing this
new data, an expanded nonlinear analytical effort was pursued using more modes and
including fore-and-aft motion of the wings as well as the usual bending and torsion
motions. These fore-and-aft motions couple in nonlinearly into the analysis, and
were also observed during the tests.

To summarize, an analytical method was developed to incorporate nonlinear
structural and acrodynamic stall effects into a full, 3D aeroelastic flutter analysis.
High quality stall flutter data was obtained to check the new nonlinear analysis.
Transitions from linear, coupled-mode, bending-torsion flutter to single-mode,
torsional stall flutter was observed experimentally and predicted analytically.  Also
transition from linear divergence to bending stall flutter was observed
experimentally and predicted analytically. These experimental and nonlinear
analytic results should be of interest in understanding stall flutter at high angles of
attack.
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FOREWORD

The following pages represent a more detailed summary of the
work performed on this contract. They are from a technical
presentation given on October 10, 1991 at the Air Force Office of
Scientific Research Contractor's Meeting on Structural Dynamics at
Datyon, Ohio.




NONLINEAR STALL FLUTTER
and
DIVERGENCE ANALYSIS
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CANTILEVERED GRAPHITE/EPOXY WINGS
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OBJECTIVES

Investigate nonlinear structures and nonlinear
aerodynamics in large-amplitude, high angle-of-attack,
stall flutter of aeroelastically tailored wings

Develop method to incorporate nonlinear effects
(aerodynamic and structural) into a flutter analysis

Develop in context of simple, modal ﬂutter !nalysns
to keep computational costs low -

)
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Concurrently develop experimental basé of small and
large amplitude flutter data for variety of composite
laminate wings




ANALYSIS - RAYLEIGH-RITZ MODEL

W(X,y,t) = Zyi(XrY)qi(t) = Z¢i(X)Wl(Y)qi(t)
1 i
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Qi = ‘”‘f(x,y) Yi (x,y)dA = ij(le) q)i (x) \Vi(Y) dA
A A

(M] {g} + [K] {q} = {(Q}

— Mass and stiffness of styrofoam calculated
and added to overall matrices

— Empirical cubic stiffening added to torsional mode

— wl c .2
Koo = Ky + Kyod,




ANALYSIS - AERODYNAMICS
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Ac,

non-linear
static curve

Cz = Cz1 + Cgz2

* * %
Cz1 = Sz00 + kyz 8 + Cgzy

* *

* * *
Czy+ AzCzy = AzlapzO + Gz0] + 0Oz[apz0 + 670 ]

do X *
Cz2 + 2dwCz2 + w2 (1+d2)Cz2 =

= -w2(1+d2)[Acz Ia + eazgtcz |a]
where,
2 N d
a=0-h ; ()E(a't) ; ts%

— Aerodynamic model from ONERA
— Coefficients determined semi-empirically

— 2D aerodynamics at each spanwise location,
corrected for finite span (3D) effects,
integrated to give modal forces
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ANALYSIS - FOURIER ANALYSIS




ANALYSIS - FOURIER ANALYSIS

— Assume polynomial form to aerodynamic curve,
Ji

AC, () = Zaij(a-—ai)j ; A SOS0G+1
j=0

— Sinusoidal input for effective angle of attack,
. o(T) = Og + Oysin® = 0 + Agsin(kT) + Qccos (kT)

04
= kT + : = a2 + o2 ; = cipn-l=C
¢ § &, < pd € = sin o

— Fourier analysis for harmonic components of AC,

I
+TC 2

AC,o = -%EJACz (1) d9 = %J'Acz(r) a9
-t T

2

T
2

AC,, = —125—“‘Acz (1) sin® 4®
T

2




EXPERIMENT

— Hercules AS4/3501-6 graphite/epoxy test specimens
— [00/90]g, [+152/0]g, [-152/0]5 layups




EXPERIMENT

— Wind tunnel tests in 5' x 7.5 free jet test section

~ Data from strain gauges and visual data on video
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GROUND PLANE

ROTATING
SPECIMEN STAND
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- CONCLUSIONS

Developed analytic method to incorporate
nonlinear structural and aerodynamic effects into
a full, 3D aeroelastic problem

Method used with simplified aerodynamics and
lowest harmonic, but can be extended to more
complex variations

Experimental data obtained to check analysis

Transition from linear, coupled-mode, bending-torsion
flutter to single-mode, torsional stall flutter observed
experimentally and predicted analytically

Transition from linear divergence to bending stall
flutter observed experimentally and predicted
analytically




